Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Sci Rep ; 14(1): 6958, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521856

RESUMO

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.


Assuntos
Proteínas do Citoesqueleto , Glaucoma de Ângulo Aberto , Glicoproteínas , Animais , Camundongos , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/terapia , Glaucoma de Ângulo Aberto/metabolismo , Pressão Intraocular/genética , Lentivirus/genética , Malha Trabecular/metabolismo
2.
Ophthalmology ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309476

RESUMO

PURPOSE: To investigate the distribution of genotypes and natural history of ABCA4-associated retinal disease in a large cohort of patients seen at a single institution. DESIGN: Retrospective, single-institution cohort review. PARTICIPANTS: Patients seen at the University of Iowa between November 1986 and August 2022 clinically suspected to have disease caused by sequence variations in ABCA4. METHODS: DNA samples from participants were subjected to a tiered testing strategy progressing from allele-specific screening to whole genome sequencing. Charts were reviewed, and clinical data were tabulated. The pathogenic severity of the most common alleles was estimated by studying groups of patients who shared 1 allele. Groups of patients with shared genotypes were reviewed for evidence of modifying factor effects. MAIN OUTCOME MEASURES: Age at first uncorrectable vision loss, best-corrected visual acuity, and the area of the I2e isopter of the Goldmann visual field. RESULTS: A total of 460 patients from 390 families demonstrated convincing clinical features of ABCA4-associated retinal disease. Complete genotypes were identified in 399 patients, and partial genotypes were identified in 61. The median age at first vision loss was 16 years (range, 4-76 years). Two hundred sixty-five families (68%) harbored a unique genotype, and no more than 10 patients shared any single genotype. Review of the patients with shared genotypes revealed evidence of modifying factors that in several cases resulted in a > 15-year difference in age at first vision loss. Two hundred forty-one different alleles were identified among the members of this cohort, and 161 of these (67%) were found in only a single individual. CONCLUSIONS: ABCA4-associated retinal disease ranges from a very severe photoreceptor disease with an onset before 5 years of age to a late-onset retinal pigment epithelium-based condition resembling pattern dystrophy. Modifying factors frequently impact the ABCA4 disease phenotype to a degree that is similar in magnitude to the detectable ABCA4 alleles themselves. It is likely that most patients in any cohort will harbor a unique genotype. The latter observations taken together suggest that patients' clinical findings in most cases will be more useful for predicting their clinical course than their genotype. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
Ophthalmol Sci ; 3(4): 100397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38025158

RESUMO

Purpose: Choroideremia is an X-linked choroidopathy caused by pathogenic variants in the CHM gene. It is characterized by the early appearance of multiple scotomas in the peripheral visual field that spread and coalesce, usually sparing central vision until late in the disease. These features make quantitative monitoring of visual decline particularly challenging. Here, we describe a novel computational approach to convert Goldmann visual field (GVF) data into quantitative volumetric measurements. With this approach, we analyzed visual field loss in a longitudinal, retrospective cohort of patients with choroideremia. Design: Single-center, retrospective, cohort study. Participants: We analyzed data from 238 clinic visits of 56 molecularly-confirmed male patients with choroideremia from 41 families (range, 1-27 visits per patient). Patients had a median follow up of 4 years (range, 0-56 years) with an age range of 5 to 76 years at the time of their visits. Methods: Clinical data from molecularly-confirmed patients with choroideremia, including GVF data, were included for analysis. Goldmann visual field records were traced using a tablet-based application, and the 3-dimensional hill of vision was interpolated for each trace. This procedure allowed quantification of visual field loss from data collected over decades with differing protocols, including different or incomplete isopters. Visual acuity (VA) data were collected and converted to logarithm of the minimum angle of resolution values. A delayed exponential mixed-effects model was used to evaluate the loss of visual field volume over time. Main Outcome Measures: Visual acuity and GVF volume. Results: The estimated mean age at disease onset was 12.6 years (standard deviation, 9.1 years; 95% quantile interval, 6.5-36.4 years). The mean field volume loss was 6.8% per year (standard deviation, 4.5%; 95% quantile interval, 1.9%-18.8%) based on exponential modeling. Field volume was more strongly correlated between eyes (r2 = 0.935) than best-corrected VA (r2 = 0.285). Conclusions: Volumetric analysis of GVF data enabled quantification of peripheral visual function in patients with choroideremia and evaluation of disease progression. The methods presented here may facilitate the analysis of historical GVF data from patients with inherited retinal disease and other diseases associated with visual field loss. This work informs the creation of appropriate outcome measures in choroideremia therapeutic trials, particularly in trial designs. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

4.
Invest Ophthalmol Vis Sci ; 64(13): 40, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37878301

RESUMO

Purpose: Macular neovascularization is a relatively common and potentially visually devastating complication of age-related macular degeneration. In macular neovascularization, pathologic angiogenesis can originate from either the choroid or the retina, but we have limited understanding of how different cell types become dysregulated in this dynamic process. Methods: To study how gene expression is altered in focal areas of pathology, we performed spatial RNA sequencing on a human donor eye with macular neovascularization as well as a healthy control donor. We performed differential expression to identify genes enriched within the area of macular neovascularization and used deconvolution algorithms to predict the originating cell type of these dysregulated genes. Results: Within the area of neovascularization, endothelial cells demonstrated increased expression of genes related to Rho family GTPase signaling and integrin signaling. Likewise, VEGF and TGFB1 were identified as potential upstream regulators that could drive the observed gene expression changes produced by endothelial and retinal pigment epithelium cells in the macular neovascularization donor. These spatial gene expression profiles were compared to previous single-cell gene expression experiments in human age-related macular degeneration as well as a model of laser-induced neovascularization in mice. As a secondary aim, we investigated regional gene expression patterns within the macular neural retina and between the macular and peripheral choroid. Conclusions: Overall, this study spatially analyzes gene expression across the retina, retinal pigment epithelium, and choroid in health and describes a set of candidate molecules that become dysregulated in macular neovascularization.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Humanos , Animais , Camundongos , Transcriptoma , Células Endoteliais , Neovascularização de Coroide/genética , Retina , Degeneração Macular/genética
5.
JAMA Ophthalmol ; 141(9): 872-879, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589989

RESUMO

Importance: The p.Asp67Tyr genetic variant in the GJA3 gene is responsible for congenital cataracts in a family with a high incidence of glaucoma following cataract surgery. Objective: To describe the clinical features of a family with a strong association between congenital cataracts and glaucoma following cataract surgery secondary to a genetic variant in the GJA3 gene (NM_021954.4:c.199G>T, p.Asp67Tyr). Design, Setting, and Participants: This was a retrospective, observational, case series, genetic association study from the University of Iowa spanning 61 years. Examined were the ophthalmic records from 1961 through 2022 of the family members of a 4-generation pedigree with autosomal dominant congenital cataracts. Main Outcomes and Measures: Frequency of glaucoma following cataract surgery and postoperative complications among family members with congenital cataract due to the p.Asp67Tyr GJA3 genetic variant. Results: Medical records were available from 11 of 12 family members (7 male [63.6%]) with congenital cataract with a mean (SD) follow-up of 30 (21.7) years (range, 0.2-61 years). Eight of 9 patients with congenital cataracts developed glaucoma, and 8 of 8 patients who had cataract surgery at age 2 years or younger developed glaucoma following cataract surgery. The only family member with congenital cataracts who did not develop glaucoma had delayed cataract surgery until 12 and 21 years of age. Five of 11 family members (45.5%) had retinal detachments after cataract extraction and vitrectomy. No patients developed retinal detachments after prophylactic 360-degree endolaser. Conclusions and Relevance: The GJA3 genetic variant, p.Asp67Tyr, was identified in a 4-generation congenital cataract pedigree from Iowa. This report suggests that patients with congenital cataract due to some GJA3 genetic variants may be at especially high risk for glaucoma following cataract surgery. Retinal detachments after cataract extraction in the first 2 years of life were also common in this family, and prophylactic retinal endolaser may be indicated at the time of surgery.


Assuntos
Extração de Catarata , Catarata , Conexinas , Glaucoma , Descolamento Retiniano , Criança , Pré-Escolar , Humanos , Masculino , Catarata/genética , Extração de Catarata/efeitos adversos , Variação Genética , Glaucoma/genética , Retina , Estudos Retrospectivos , Conexinas/genética
6.
bioRxiv ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398429

RESUMO

Macular neovascularization is a relatively common and potentially visually devastating complication of age-related macular degeneration. In macular neovascularization, pathologic angiogenesis can originate from either the choroid or the retina, but we have limited understanding of how different cell types become dysregulated in this dynamic process. In this study, we performed spatial RNA sequencing on a human donor eye with macular neovascularization as well as a healthy control donor. We identified genes enriched within the area of macular neovascularization and used deconvolution algorithms to predict the originating cell type of these dysregulated genes. Within the area of neovascularization, endothelial cells were predicted to increase expression of genes related to Rho family GTPase signaling and integrin signaling. Likewise, VEGF and TGFB1 were identified as potential upstream regulators that could drive the observed gene expression changes produced by endothelial and retinal pigment epithelium cells in the macular neovascularization donor. These spatial gene expression profiles were compared to previous single-cell gene expression experiments in human age-related macular degeneration as well as a model of laser-induced neovascularization in mice. As a secondary aim, we also investigated spatial gene expression patterns within the macular neural retina and between the macular and peripheral choroid. We recapitulated previously described regional-specific gene expression patterns across both tissues. Overall, this study spatially analyzes gene expression across the retina, retinal pigment epithelium, and choroid in health and describes a set of candidate molecules that become dysregulated in macular neovascularization.

7.
J Glaucoma ; 32(11): e156-e160, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327471

RESUMO

Mutations in the thrombospondin 1 ( THBS1 ) gene have been previously reported in primary congenital glaucoma (PCG) pedigrees that exhibit autosomal dominant inheritance with low penetrance. We sought to determine the role of THBS1 mutations in a cohort of 20 patients with PCG and 362 normal controls from Iowa using a combination of Sanger sequencing and whole exome sequencing. We detected 16 different THBS1 variants, including 4 rare, nonsynonymous variants (p.Thr611Met, p.Asn708Lys, p.Gln1089His, and p.Glu1166Lys). However, none of these variants were judged to be disease-causing mutations based on: 1) prevalence in cases and controls from Iowa, 2) prevalence in the public database gnomAD, 3) mutation analysis algorithms, and 4) THBS1 DNA sequence conservation. These results indicate THBS1 mutations are not a common cause of PCG in patients from Iowa and may be a rare cause of PCG overall.


Assuntos
Glaucoma , Trombospondinas , Humanos , Estados Unidos/epidemiologia , Trombospondinas/genética , Citocromo P-450 CYP1B1/genética , Pressão Intraocular , Mutação , Linhagem , Glaucoma/epidemiologia , Glaucoma/genética , Glaucoma/congênito , Análise Mutacional de DNA
9.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196579

RESUMO

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.

10.
Hum Mol Genet ; 31(14): 2406-2423, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35181781

RESUMO

The human choroid is a heterogeneous, highly vascular connective tissue that dysfunctions in age-related macular degeneration (AMD). In this study, we performed single-cell RNA sequencing on 21 human choroids, 11 of which were derived from donors with early atrophic or neovascular AMD. Using this large donor cohort, we identified new gene expression signatures and immunohistochemically characterized discrete populations of resident macrophages, monocytes/inflammatory macrophages and dendritic cells. These three immune populations demonstrated unique expression patterns for AMD genetic risk factors, with dendritic cells possessing the highest expression of the neovascular AMD-associated MMP9 gene. Additionally, we performed trajectory analysis to model transcriptomic changes across the choroidal vasculature, and we identified expression signatures for endothelial cells from choroidal arterioles and venules. Finally, we performed differential expression analysis between control, early atrophic AMD, and neovascular AMD samples, and we observed that early atrophic AMD samples had high expression of SPARCL1, a gene that has been shown to increase in response to endothelial damage. Likewise, neovascular endothelial cells harbored gene expression changes consistent with endothelial cell damage and demonstrated increased expression of the sialomucins CD34 and ENCM, which were also observed at the protein level within neovascular membranes. Overall, this study characterizes the molecular features of new populations of choroidal endothelial cells and mononuclear phagocytes in a large cohort of AMD and control human donors.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Corioide , Neovascularização de Coroide/genética , Células Endoteliais , Humanos , Macrófagos , Transcriptoma/genética , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Degeneração Macular Exsudativa/complicações
11.
Retin Cases Brief Rep ; 16(1): 111-117, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31764884

RESUMO

PURPOSE: 1) To describe a case of autoimmune retinopathy mimicking heritable photoreceptor degeneration in a patient with common variable immune deficiency and 2) to investigate the humoral and cell-mediated branches of the immune system in this patient to better understand the mechanism of immune-mediated photoreceptor damage in this disease. METHODS: Retrospective chart review with evaluation of multimodal imaging, genotype analysis, and investigation of circulating autoantibodies and T-cell response to retinal antigens. RESULTS: A 40-year-old woman with bilateral, progressive vision loss was referred for evaluation of a possible inherited retinal degeneration. She was found to have asymmetric peripheral visual field constriction, cystoid macular edema, vitreous cells, and bone spicule-like pigmentary changes in both eyes. An extensive workup for underlying infectious or inflammatory causes was unrevealing, and molecular analysis for heritable retinal degeneration failed to identify a plausible disease-causing genotype. Screening for antiretinal antibodies showed the presence of multiple antiretinal antibodies, consistent with a diagnosis of autoimmune retinopathy. Immunologic workup demonstrated markedly decreased levels of serum IgA and IgG, consistent with common variable immune deficiency. T-cells isolated from the patient showed increased proliferation when stimulated with human retinal proteins, supporting a role for both cell- and humoral-mediated autoimmunity. Treatment with mycophenolate mofetil and intravenous immunoglobin therapy slowed the progression of disease and resulted in preservation of her central vision. CONCLUSION: Autoimmune retinopathy can be seen in common variable immune deficiency and has clinical findings similar to heritable photoreceptor degeneration. Both the humoral and cellular immune responses are involved in the pathophysiology. Immune modulatory therapy has stabilized the disease course in this patient and may play an important role in the management of autoimmune retinopathy.


Assuntos
Doenças Autoimunes , Imunodeficiência de Variável Comum , Degeneração Retiniana , Adulto , Doenças Autoimunes/diagnóstico , Imunodeficiência de Variável Comum/complicações , Diagnóstico Diferencial , Feminino , Humanos , Degeneração Retiniana/diagnóstico , Estudos Retrospectivos
12.
Hum Mol Genet ; 31(5): 775-782, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34590675

RESUMO

The m.3243A>G mutation in the mitochondrial genome commonly causes retinal degeneration in patients with maternally inherited diabetes and deafness and mitochondrial encephalopathy, lactic acidosis and stroke-like episodes. Like other mitochondrial mutations, m.3243A>G is inherited from the mother with a variable proportion of wild type and mutant mitochondrial genomes in different cells. The mechanism by which the m.3243A>G variant in each tissue relates to the manifestation of disease phenotype is not fully understood. Using a digital PCR assay, we found that the % m.3243G in skin derived dermal fibroblasts was positively correlated with that of blood from the same individual. The % m.3243G detected in fibroblast cultures remained constant over multiple passages and was negatively correlated with mtDNA copy number. Although the % m.3243G present in blood was not correlated with severity of vision loss, as quantified by Goldmann visual field, a significant negative correlation between % m.3243G and the age of onset of visual symptoms was detected. Altogether, these results indicate that precise measurement of % m.3243G in clinically accessible tissues such as skin and blood may yield information relevant to the management of retinal m.3243A>G-associated disease.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome MELAS , Doenças Mitocondriais , DNA Mitocondrial/genética , Surdez , Diabetes Mellitus Tipo 2/genética , Humanos , Síndrome MELAS/genética , Doenças Mitocondriais/genética , Mutação
13.
Sci Rep ; 11(1): 11774, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083587

RESUMO

Traumatic brain injuries (TBI) of varied types are common across all populations and can cause visual problems. For military personnel in combat settings, injuries from blast exposures (bTBI) are prevalent and arise from a myriad of different situations. To model these diverse conditions, we are one of several groups modeling bTBI using mice in varying ways. Here, we report a refined analysis of retinal ganglion cell (RGC) damage in male C57BL/6J mice exposed to a blast-wave in an enclosed chamber. Ganglion cell layer thickness, RGC density (BRN3A and RBPMS immunoreactivity), cellular density of ganglion cell layer (hematoxylin and eosin staining), and axon numbers (paraphenylenediamine staining) were quantified at timepoints ranging from 1 to 17-weeks. RNA sequencing was performed at 1-week and 5-weeks post-injury. Earliest indices of damage, evident by 1-week post-injury, are a loss of RGC marker expression, damage to RGC axons, and increase in glial markers expression. Blast exposure caused a loss of RGC somas and axons-with greatest loss occurring by 5-weeks post-injury. While indices of glial involvement are prominent early, they quickly subside as RGCs are lost. The finding that axonopathy precedes soma loss resembles pathology observed in mouse models of glaucoma, suggesting similar mechanisms.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/etiologia , Transtornos da Visão/etiologia , Animais , Axônios/metabolismo , Biomarcadores , Morte Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Fatores de Tempo , Tomografia de Coerência Óptica , Transtornos da Visão/diagnóstico , Transtornos da Visão/metabolismo
14.
BMC Genomics ; 22(1): 477, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174832

RESUMO

BACKGROUND: Glaucoma is a leading cause of visual disability and blindness. Release of iris pigment within the eye, pigment dispersion syndrome (PDS), can lead to one type of glaucoma known as pigmentary glaucoma. PDS has a genetic component, however, the genes involved with this condition are largely unknown. We sought to discover genes that cause PDS by testing cohorts of patients and controls for mutations using a tiered analysis of exome data. RESULTS: Our primary analysis evaluated melanosome-related genes that cause dispersion of iris pigment in mice (TYRP1, GPNMB, LYST, DCT, and MITF). We identified rare mutations, but they were not statistically enriched in PDS patients. Our secondary analyses examined PMEL (previously linked with PDS), MRAP, and 19 other genes. Four MRAP mutations were identified in PDS cases but not in controls (p = 0.016). Immunohistochemical analysis of human donor eyes revealed abundant MRAP protein in the iris, the source of pigment in PDS. However, analysis of MRAP in additional cohorts (415 cases and 1645 controls) did not support an association with PDS. We also did not confirm a link between PMEL and PDS in our cohorts due to lack of reported mutations and similar frequency of the variants in PDS patients as in control subjects. CONCLUSIONS: We did not detect a statistical enrichment of mutations in melanosome-related genes in human PDS patients and we found conflicting data about the likely pathogenicity of MRAP mutations. PDS may have a complex genetic basis that is not easily unraveled with exome analyses.


Assuntos
Exoma , Glaucoma de Ângulo Aberto , Animais , Glaucoma de Ângulo Aberto/genética , Humanos , Iris , Glicoproteínas de Membrana , Camundongos , Pigmentação , Sequenciamento do Exoma
15.
J Neurosci Methods ; 360: 109267, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34157370

RESUMO

BACKGROUND: Changes in choroidal thickness are associated with various ocular diseases, and the choroid can be imaged using spectral-domain optical coherence tomography (SD-OCT) and enhanced depth imaging OCT (EDI-OCT). NEW METHOD: Eighty macular SD-OCT volumes from 80 patients were obtained using the Zeiss Cirrus machine. Eleven additional control subjects had two Cirrus scans done in one visit along with enhanced depth imaging (EDI-OCT) using the Heidelberg Spectralis machine. To automatically segment choroidal layers from the OCT volumes, our graph-theoretic approach was utilized. The segmentation results were compared with reference standards from two independent graders, and the accuracy of automated segmentation was calculated using unsigned/signed border positioning/thickness errors and Dice similarity coefficient (DSC). The repeatability and reproducibility of our choroidal thicknesses were determined by intraclass correlation coefficient (ICC), coefficient of variation (CV), and repeatability coefficient (RC). RESULTS: The mean unsigned/signed border positioning errors for the choroidal inner and outer surfaces are 3.39 ± 1.26 µm (mean ± standard deviation)/- 1.52 ± 1.63 µm and 16.09 ± 6.21 µm/4.73 ± 9.53 µm, respectively. The mean unsigned/signed choroidal thickness errors are 16.54 ± 6.47 µm/6.25 ± 9.91 µm, and the mean DSC is 0.949 ± 0.025. The ICC (95% confidence interval), CV, RC values are 0.991 (0.977-0.997), 2.48%, 14.25 µm for the repeatability and 0.991 (0.977-0.997), 2.49%, 14.30 µm for the reproducibility studies, respectively. COMPARISON WITH EXISTING METHOD(S): The proposed method outperformed our previous method using choroidal vessel segmentation and inter-grader variability. CONCLUSIONS: This automated segmentation method can reliably measure choroidal thickness using different OCT platforms.


Assuntos
Corioide , Tomografia de Coerência Óptica , Corioide/diagnóstico por imagem , Humanos , Reprodutibilidade dos Testes
16.
Hum Mol Genet ; 30(16): 1543-1558, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34014299

RESUMO

The human neural retina is a light sensitive tissue with remarkable spatial and cellular organization. Compared with the periphery, the central retina contains more densely packed cone photoreceptor cells with unique morphologies and synaptic wiring. Some regions of the central retina exhibit selective degeneration or preservation in response to retinal disease and the basis for this variation is unknown. In this study, we used both bulk and single-cell RNA sequencing to compare gene expression within concentric regions of the central retina. We identified unique gene expression patterns of foveal cone photoreceptor cells, including many foveal-enriched transcription factors. In addition, we found that the genes RORB1, PPFIA1 and KCNAB2 are differentially spliced in the foveal, parafoveal and macular regions. These results provide a highly detailed spatial characterization of the retinal transcriptome and highlight unique molecular features of different retinal regions.


Assuntos
Células Fotorreceptoras Retinianas Cones , Doenças Retinianas , Fóvea Central , Humanos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Doenças Retinianas/genética , Transcriptoma/genética
17.
Ophthalmol Sci ; 1(1): 100002, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37672224

RESUMO

Purpose: To evaluate the first association specific to exudative age-related macular degeneration (AMD) located near the matrix metalloproteinase 9 (MMP9) gene. Design: Genetic association study. Participants: One thousand seven hundred twelve patients with AMD (672 nonexudative, 1040 exudative) of predominantly northern European descent seeking treatment at the University of Iowa Hospitals and Clinics. Methods: We reanalyzed the International AMD Genetics Consortium (IAMDGC) data to validate the association of polymorphisms near MMP9 with exudative AMD and to identify additional associated single nucleotide polymorphisms (SNPs), especially MMP9 coding sequence SNPs. We genotyped a cohort of 1712 AMD patients from Iowa with 3 SNPs identified with our analysis of the IAMDGC cohort using commercially available real-time quantitative polymerase chain reaction (PCR) assays. Firth regression was used to measure the association between MMP9 SNP genotypes and exudative AMD in our cohort of patients from Iowa. In addition, we developed a PCR-based assay to genotype the Iowa cohort at a short tandem repeat polymorphism (STRP) at the MMP9 locus. Main Outcome Measures: Odds ratios and P values for exudative compared with nonexudative AMD patients in the Iowa cohort for MMP9 SNPs (rs4810482, rs17576, and rs17577) and STRP. Results: We identified 3 SNPs in the MMP9 locus (rs4810482, rs17576, and rs17577) that are highly associated with exudative AMD in patient cohorts of the IAMDGC. These MMP9 SNPs also are associated with exudative AMD in the cohort of 1712 AMD patients from Iowa (rs4810482: odds ratio [OR], 0.82; P = 0.010; rs17576: OR, 0.86; P = 0.046; and rs17577: OR, 0.80; P = 0.041). We also genotyped the cohort of AMD patients from Iowa at rs142450006, another MMP9 polymorphism that previously was associated with exudative AMD. We detected a 4bp STRP, (TTTC)n, at the rs142450006 locus that is highly polymorphic and associated significantly with exudative AMD (OR, 0.78; P = 0.016). Conclusions: This study independently confirms and expands an association between the MMP9 locus and exudative AMD, further implicating a role for extracellular matrix abnormalities in choroidal neovascularization.

18.
Prog Retin Eye Res ; 83: 100934, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33383180

RESUMO

Gene expression provides valuable insight into cell function. As such, vision researchers have frequently employed gene expression studies to better understand retinal physiology and disease. With the advent of single-cell RNA sequencing, expression experiments provide an unparalleled resolution of information. Instead of studying aggregated gene expression across all cells in a heterogenous tissue, single-cell technology maps RNA to an individual cell, which facilitates grouping of retinal and choroidal cell types for further study. Single-cell RNA sequencing has been quickly adopted by both basic and translational vision researchers, and single-cell level gene expression has been studied in the visual systems of animal models, retinal organoids, and primary human retina, RPE, and choroid. These experiments have generated detailed atlases of gene expression and identified new retinal cell types. Likewise, single-cell RNA sequencing investigations have characterized how gene expression changes in the setting of many retinal diseases, including how choroidal endothelial cells are altered in age-related macular degeneration. In addition, this technology has allowed vision researchers to discover drivers of retinal development and model rare retinal diseases with induced pluripotent stem cells. In this review, we will overview the growing number of single-cell RNA sequencing studies in the field of vision research. We will summarize experimental considerations for designing single-cell RNA sequencing experiments and highlight important advancements in retinal, RPE, choroidal, and retinal organoid biology driven by this technology. Finally, we generalize these findings to genes involved in retinal degeneration and outline the future of single-cell expression experiments in studying retinal disease.


Assuntos
Células Endoteliais , Degeneração Retiniana , Animais , Corioide , Humanos , Retina , Epitélio Pigmentado da Retina , Análise de Sequência de RNA
19.
Exp Eye Res ; 200: 108204, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910939

RESUMO

Single-cell RNA sequencing has revolutionized ocular gene expression studies. This technology has enabled researchers to identify expression signatures for rare cell types and characterize how gene expression changes across biological conditions, such as topographic region or disease status. However, sharing single-cell RNA sequencing results remains a major obstacle, particular for individuals without a computational background. To address these limitations, we developed Spectacle, an interactive web-based resource for exploring previously published single-cell RNA sequencing data from ocular studies. Spectacle is powered by a locally developed R package, cellcuratoR, which utilizes the Shiny framework in R to generate interactive visualizations for single-cell expression data. Spectacle contains five pre-processed ocular single-cell RNA sequencing data sets and is accessible via the web at OcularGeneExpression.org/singlecell. With Spectacle, users can interactively identify which cell types express a gene of interest, detect transcriptomic subpopulations within a cell type, and perform highly flexible differential expression analyses. The freely-available Spectacle system reduces the bioinformatic barrier for interacting with rich single-cell RNA sequencing studies from ocular tissues, making it easy to quickly identify cell types that express a gene of interest.


Assuntos
Biologia Computacional/métodos , RNA/genética , Retina/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Humanos , Retina/citologia , Sequenciamento do Exoma
20.
Microvasc Res ; 131: 104031, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32531351

RESUMO

The human choroidal vasculature is subject to age-related structural and gene expression changes implicated in age-related macular degeneration (AMD). In this study, we performed both bulk and single-cell RNA sequencing on infant (n = 4 for bulk experiments, n = 2 for single-cell experiments) and adult (n = 13 for bulk experiments, n = 6 for single-cell experiments) human donors to characterize how choroidal gene expression changes with age. Differential expression analysis revealed that aged choroidal samples were enriched in genes encoding pro-inflammatory transcription factors and leukocyte transendothelial cell migration adhesion proteins. Such genes were observed to be differentially expressed specifically within choroidal endothelial cells at the single-cell level. Immunohistochemistry experiments support transcriptional findings that CD34 is elevated in infant choriocapillaris endothelial cells while ICAM-1 is enriched in adults. These results suggest several potential drivers of the pro-inflammatory vascular phenotype observed with advancing age.


Assuntos
Envelhecimento/genética , Corioide/irrigação sanguínea , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/genética , Degeneração Macular/genética , Análise de Sequência de RNA , Análise de Célula Única , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Inflamação/metabolismo , Degeneração Macular/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...